פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא )."

Transcript

1 מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של גרף קשיר. הגדרה: גרף ללא מעגלים נקרא יער. גרף קשיר בלי מעגלים נקרא עץ. דוגמה 8.1: לפניך עץ מסדר 6. תרגילים: הוכיחי: כל עץ הוא גרף זוגי. בין כל שני קודקודים בעץ קיימת מסילה יחידה. (למשל, המסלול היחיד שמחבר את הקודקודים 2 ו- 6 בדוגמה הוא ) עמוד 1

2 הגדרה: קודקוד בעץ בעל ערכיות 1 נקרא קודקוד קצה או עלה. צלע קצה היא צלע שאחד מקודקודיו הוא עלה. נקודת חתך בגרף כל שהוא, הוא קודקוד שסילוקו מהגרף (ביחד עם כל הצלעות המחברות אליו) מגדיל את מספר מרכיבי הקשירות של הגרף. בדוגמה 1,2,3,6, 8.1 הם עלים, וכן הקודקודים 4,5 הם נקודות חתך. בפרט, שימי לב שהסרת קודקוד 4 יוצרת תת גרף עם 4 מרכיבי קשירות! שמת לב שבדוגמה, כל קודקוד הוא או עלה או נקודת חתך? מסתבר שהמצב הכללי הוא כמו הדוגמה. תרגיל 3. הוכיחי: בעץ, כל קודקוד הוא או עלה או נקודת חתך. בפרק זה, דיברנו עד כה על הסרת קודקודים (ובעקבות זה, גם צלעות המחוברות אליהם). המשפט הבא נותן אפיון של עץ במונחים של צלעות. משפט 8.1 גרף קשיר הוא עץ כל צלע בו הוא גשר. ניזכר (מפרק 5) שגשר בגרף היא צלע שהסרתה הופכת את תת הגרף הנוצר לגרף שאינו קשיר. תרגיל: 1. הוכיחי שספר מרכיבי קשירות בעץ שממנו הוסרה צלע הוא. 2 - עמוד 2

3 הוכחת משפט 8.1: : תהא uv צלע בעץ. עלינו להראות ש- uv גשר, זאת אומרת שהגרף על ידי הסרת הצלע, uv הוא גרף לא קשיר. המתקבל מ- -הגרף \ { uv} נניח בשלילה, נניח v ל- u שאינה מכילה את הצלע אינו גשר. אזי תת הגרף uv} ' = \ { נשאר קשיר. לכן, uv כעת, מסילה זו בצירוף הצלע.uv uv : קיימת ב-' מסילה בין היא מעגל ב-, בסתירה! נניח בשלילה שקיים גרף קשיר, אשר כל צלע בו הוא גשר, אך הוא לא עץ. עלינו להגיע לסתירה. כאמור, G גרף אך הוא לא עץ. לכן קיים מעגל ב-. G נביט בצלע כל שהוא uv במעגל. מצד אחד, uv הוא גשר, על פי הנחתינו. לכן u ו- v נמצאים בשני מרכיבי קשירות שונים. אך, מצד שני, המעגל בלי הצלע uv מהווה מסילה בין u ו-! v סתירה זו מוכיחה את הדרוש. המשפט הבא מקשר את מספר הצלעות בעץ עם סדרו: משפט 8.2 יהא > E =< V, עץ. אזי 1 V. E = ואכן, בעץ שבדוגמה 8.1, יש 6 קודקודים, וכן 5=6-1 צלעות. הוכחת משפט 8.2: באינדוקציה על. n = V E = 0 = V 1 ו-. אם = 1 n, אזי K 1 - עמוד 3

4 עץ מסדר. n נביט בצלע כל שהיא לא קשיר (שכן הורד ממנו גשר) חסר מעגלים (שכן מהווה גשר ב-, ולכן }\ הוא יער-גרף uv} \{ חסר uv} =< V, E יהא עכשיו 2 n, ונניח נכונות לכל עצים מסדר קטן מ-. n יהא > חסר מעגלים, לכן גם על פי משפט uv 8.1. ב- uv מעגלים) בעל 2 מרכיבי קשירות,, 2 1 (למה 2 מרכיבי קשירות?)., ולכן נקבל, על פי הנחת האינדוקציה בכל מרכיב: מספר הקודקודים בכל מרכיב הוא פחות מ- n וכן ) 1. E ) = V ( ( 2 2 E( 1 ) = V ( 1 ) 1 אך מתקיים: א. E = E וכן 1 ( 1 ) + E( 2 ) + uv ) ( V. V = V ) + נציב לקבל : ב. ( 1 2 E( E = E( 1 ) + כדרוש. 2 ) + 1 = V ( 1 ) 1+ V ( 2 ) 1+ 1 = V 1 א ב uv uv E( 1 ) E( 2 ) מקבלים: התרגיל הבא, שניעזר בו בהמשך, מאפיין את הגרפים הקשירים חסרי המעגלים בעלי התכונה. E = V 1 תרגיל: הוכיחי: יהא גרף קשיר המקיים G =< V, E חסר מעגלים. E אזי > = V 1 G =< V, E >.2 אם ורק אם G מהווה עץ. 2 n, יש לפחות 2 עלים. במשפט הבא נוכיח: בכל עץ מסדר - עמוד 4

5 משפט 8.3 יהא > E =< V, עץ מסדר 2 n. אזי יש לפחות 2 קודקודי קצה. הוכחת משפט 8.3: נניח בשלילה, ש- > E >= V, עץ מסדר לפחות 2 ובעל לכל היותר קודקוד קצה אחד.. deg v = 2 E = 2( n 1) = 2n ניעזר במשפטים 1.1 ו- 8.2: מתקיים 2 אך, אם על פי הנחת השלילה, מבין אברי v V V יש שפרט אולי לקודקוד אחד, לכל קודקוד אחר יש ערכיות לפחות 2. לכל היותר קודקוד אחד בעל ערכיות 1, זה אומר 1 + 2( n 1) = 2n מזה נקבל, 1 ערכיות שאר הקודקודים לפחות עלה v deg בסתירה! v V עץ פורש של גרף: עץ פורש של גרף הוא מעין "שלד" שלו. מסתבר, (ראי משפט 8.4) שלכל גרף קיים לפחות עץ פורש אחד. נקדים בכמה הגדרות: הגדרה: תת גרף פורש של גרף. G המכיל את כל קודקודי G הוא תת גרף של G דוגמה 8.2:. K n הוא תת גרף פורש של Cn עץ פורש בגרף Gהוא תת גרף פורש של G שהוא גם עץ. דוגמה :8.3. K n הוא עץ פורש של P n.1 2. באיור הבא, הגרף שצלעותיו צבועות בכחול הוא עץ פורש של השריג מגודל 3 3 3, הכוונה לגרף מסדר 16 שקודקודיו מיוצגים על ידי צמתי שריג.(בשריג מגודל 3 מגודל 3 3, וקיימות 24 צלעות בין הקודקודים, לפי החיבורים של צמתי השריג ביניהם). - עמוד 5

6 3. עץ פורש זה אינו יחיד- שכן, האיור הבא מראה עץ פורש נוסף של השריג. שימו לב שעץ פורש זה איזומורפי לגרף! P ראי נוסחת קיילי בפרק הבא שם נספור את מספר עצי הפרישה השונים של K n בנושא עצי פרישה קיימים שפע של יישומים. למשל, אם מחפשים דרך זולה לקשר בין מסופי מחשב שונים, בין קווי טלפון, בתי חרושת או ערים שונות, הפתרון הוא בדרך כלל סוג של עץ פורש ביניהם. טבעי, אם כן, לשאול את השאלה הבאה: האם לכל גרף קשיר קיים עץ פורש? התשובה היא חיובית, כפי שנראה ממשפט עמוד 6

7 משפט 8.4 > E G >= V, גרף קשיר. אזי קיים לו עץ פורש. הוכחת משפט 8.4: יהא G גרף קשיר. אם G הוא עץ, אזי G עצמו מהווה עץ פורש כנדרש. אחרת, נתחיל להוריד צלעות, בסדר כל שהוא, בתנאי שבכל שלב, תת הגרף הנוצר נשאר קשיר. בשלב מסוים, נקבל תת גרף קשיר קריטי של G, זאת אומרת, אין צלע נוספת שניתנת לסילוק מבלי להפוך את תת הגרף הנשאר לגרף לא קשיר. נסמן תת גרף זה על ידי. H נשים לב לתכונותיהם של. H H מהווה תת גרף של G מסדר n -שכן הורדנו צלעות מ-, G אך לא קודקודים. כל צלע ב- H היא גשר, שכן H הוא תת גרף קשיר קריטי של שנוריד ממנו יהפוך את תת הגרף הנותר לגרף לא קשיר., G זאת אומרת כל צלע, G קיבלנו. לכן, לפי משפט 8.1, H הוא עץ. היות ו- H הוא תת גרף המכיל את כל קודקודי את הדרוש: H הוא עץ פורש של G מציאת עץ פורש של גרף ממושקל, בעל משקל מינימלי: להלן בעיה יישומית שיש לה השלכות מעשיות במדעי המחשב וביישומים אחרים: האלגוריתם של (1956) Kruskal למציאת עץ פורש של גרף קשיר ממושקל, בעל משקל מינימלי: מהלך האלגוריתם הוא הבא: מתחילים עם -הגרף הריק מסדר n שהוא יער המורכב מ-, n N n עצים איזומורפיים ל-. בכל שלב נבחר את הצלע ב- G בעלת המשקל המינימלי מבין כל K 1 הצלעות שנותרו בגרף ונצרף אותה בכפוף לתנאי שהוספתה אינה יוצרת מעגל. האלגוריתם נעצר כאשר בנינו עץ עם V צלעות.. הנה האלגוריתם בצורה פורמלית: 1 האלגוריתם: נתון: > E G =< V, גרף קשיר ממושקל מסדר. n - עמוד 7

8 המטרה: לבנות עץ פורש בעל משקל מינימלי, אותו נכנה עץ פורש מינימלי. התהליך:, השלב (0) = N n, G ומסמנים השלב ההתחלתי = 0 i : מתחילים בתת הגרף N n של.1. במילים E = 0 E, ( 0) = N n, G ומסמנים ההתחלתי = 0 i : מתחילים בתת הגרף N של n אחרות, מסדר הוא הגרף ההתחלתי, והוא נטול צלעות, בעוד ש- E 0 הוא אוסף כל n (0) הצלעות של G.. 2 השלב = 1 i : בוחרים צלע e מ- E בעלת משקל מינימלי מבין כל צלעות, E מוסיפים ל ( (1), ומסמנים את הגרף הנוצר על ידי את הצלע e (במילים אחרות, = (0) e 1 (1) 1 (0) וכן מסמנים = E. חסר מעגלים. (1) 1 E 0 \ e 1, E וכפוף לתנאי שהגרף 1 1 e 2 : i = 2 בוחרים צלע מ- E בעלת משקל מינימלי מבין כל צלעות.3 חסר מעגלים. (שימו לב שבשלב זה, אין אפשרות עדיין ליצור מעגל, אך. E 2 = E1 \ e2 (2) (1) = e2 התנאי עומד בעינו). מסמנים, (i) 4. חוזרים על שלב 3, עבור, i = s...,3,4 כאשר כל פעם מגדילים את קבוצת הצלעות ל- - בלי שיווצר מעגל באף שלב, עד אשר מגיעים לשלב בו אין יותר אפשרות להוספת צלעות. נוספות בלי ליצור מעגל. גרף "סופי" זה מכונה (i) הערה: נשים לב שמעצם הגדרתו, לכל, 1 i s גרף בעל i צלעות. - עמוד 8

9 דוגמא 8.4: להלן דוגמה של ביצוע האלגוריתם של Kruskal שלב אחרי שלב. תיאור תמונה האיור מימין מראה גרף ממושקל מסדר 7. ניצור עץ פורש שצלעותיה יסומנו בירוק. הצלעות בעלות המשקל המינימלי הן: CE,AD. AD נבחר מביניהן באופן שרירותי. בחירתה מסומנת על ידי צביעתה בירוק. כעת, CE היא הצלע בעלת משקל מינימלי שטרם נבחרה ושאינה יוצרת מעגל, ולכן היא מסומנת כצלע שניה. - עמוד 9

10 הצלע "הכי זולה" הבאה, היא DF בעלת משקל 6, ולכן מסומנת. שתי הצלעות הבאות בתור הן AB, ו- BE, שתיהן בעלות משקל 7. בוחרים (באופן שרירותי) מביניהם את. AB שימי לב: כעת הצלע BD מסומנת באדום, לסמן שלא ניתן לבחור אותו באף בחירה בהמשך, שכן הוספתה לעץ היתה יוצרת מעגל.(ABDA) התהליך ממשיך ובו מסמנים את הצלע הכי זולה מבין הצלעות נשארות, דהיינו BE בעלת משקל 7. שימי לב שבשלב זה, עוד הרבה צלעות נוספות מסומנות באדום, (בדקי שאת מבינה למה כל אחת כזאת צבועה כך). כעת התהליך מסתיים עם הוספת הצלע EG ממשקל 9; שימי לב שהוספנו 6 צלעות (כצפוי מעץ מסדר 7), ושהתקבל עץ פורש ממושקל בעל משקל 39 לאנימציה של האלגוריתם של Kruskal על גרפים נוספים, לחצי כאן. - עמוד 10

11 ניתוח האלגוריתם: אלגוריתם זה מהווה דוגמה של אלגוריתם חמדן Algorithm) (Greedy. הרעיון של אלגוריתם "חמדן" הוא שבכל שלב בוחרים את האפשרות הטובה ביותר הניראית לעין, מבלי לקחת בחשבון את השלכות הבחירה לטווח רחוק. בדרך כלל, אלגוריתם חמדן לא מובטח לתת את התוצאה הטובה ביותר, שכן בחירה "חמדנית" רגעית בשלב מסוים עלולה לגרום, לפעמים, לברירת מחדל פחות טובה בשלב מאוחר יותר. להמחשת העניין, נעיין באיורים הבאים: אלגוריתם חמדן פיתרון אופטימלי שני האיורים מתארים ניסיון לבנות מסילה בעלת אורך הקצר ביותר (במובן האוקלידי הרגיל) העוברת בין 8 הקודקודים המצוינים. לפי האלגוריתם החמדן, הצלע השלישית קצרה יותר מזו שבאיור מתחתיו, אך המסילה הראשונה "משלמת את המחיר לחמדנות שלה" בצלע האחרונה, ובכך אורך המצטבר של צלעות מסילת האלגוריתם החמדן גדול יותר מזה של המסילה מתחתיה, שהיא מהווה הפתרון האופטימלי. החידוש, אם כן, באלגוריתם של, Kruskal הוא שהוא תמיד נותן את הפתרון האופטימלי! במילים אחרות, העץ שנבנה לפי האלגוריתם (החמדן) של,Kruskal תמיד יתן עץ פורש בעל משקל מינימלי. הנה המשפט: - עמוד 11

12 משפט 8.5 האלגוריתם של Kruskal נותן עץ פורש מינימלי. הוכחה: עלינו להראות G, וכן, א. ב. שהגרף המתקבל מהאלגוריתם של קרוסקל הוא עץ פורש של שלעץ זה משקל מינימלי מבין כל העצים הפורשים את. G. s = n וש- 1,G א. נתייחס לסימנים מהאלגוריתם, ונוכיח כי תת הגרף הוא עץ פורש של הוכחה: קודם נראה, באופן אינדוקטיבי ש- חסר מעגלים.,(הגרף המתקבל מ- על ידי הוספת צלע אחת), הוא חסר מעגלים. נניח כי מעגלים, לפי כללי בנייתה מ- יתר על כן, (1). חסר מעגלים. אזי גם (0) (s 1) ( s 1) הוא קשיר, שכן G הוא קשיר, ואם היה ל- היה אפשר להוסיף לו גשר מהצלעות הנשארות ב יתכן. הוא חסר יותר ממרכיב קשירות אחד,, וכך היינו מגדילים את העץ, דבר שלא E s לבסוף, היות ו- אנו מסיקים ש- G), מכיל את כל קודקודי "כבר" (הרי, G מכילה את כל קודקודי הוא עץ פורש של ממשפט 8.2 נובע ש 1 n. s = Gבעל s צלעות (עייני בהערה לפני דוגמה 8.4). (0) G, דהיינו ש ) = ( s) נוכיח כי ב. הוא עץ פורש מינימלי של )ω הוא המינימלי מבין משקלות כל תת העצים הפורשים של. G לעץ פורש של G בעל משקל מינימלי נקרא עץ פורש אופטימלי.. ω ( ) = ω( עץ פורש אופטימלי של, G עלינו להראות כי אם סיימנו. = ( 1) n ) יהא אחרת, קיימת לפחות צלע אחת ב- שאיננה ב- שהתקבלו. נביט בסידרת צלעות - עמוד 12

13 e1 e2,..., e n 1 ei = uv ונסמן על ידי, e1 e2 (לפי סדר) מהאלגוריתם,..., את הצלע הראשונה מבין, e n 1. שאיננה ב- G היות ו-. e נביט בגרף, דהיינו זה שמתקבל מ- על ידי הוספת הצלע עץ פורש של i + e i u (שנסמנה על ידי ( המחברת בין ל-, v ולכן מכיל מעגל-אותו נסמן + e i p uv, קיימת מסילה ב- על ידי C -ראי איור.. p uv p uv תהא e צלע ב- שמשקלה מינימלי מבין כל צלעות. G הוא עץ פורש של ' = + e e i טענה: גם הגרף נביט בצלע. e היות ו- e אומרת, הגרף שייכת למעגל בגרף אינו גשר ב- e+ (למה?). זאת פירקה את המעגל היחיד i e, + e חסר מעגלים, (שכן הסרת e i C ' הוא גרף קשיר, = + e i e ' = + e i e ), ובעל שהיה קיים ב- e+ 1 n צלעות. לאור משפט 8.2, אנו מסיקים שהגרף i הוא עץ פורש של G.. ω( ') = ω( ) + ω( ei ) ω( יתר על כן, (e. e נשווה בין משקלות e i ו- מחד, הצלע e i נבחרה באלגוריתם של קרוסקל להיות הצלע בעלת משקל מינימלי מבין כל הצלעות..., e1 לא יוצרת מעגל., e2 בעלות התכונה שצירופה לצלעות 1 i e - עמוד 13

14 מאידך, גם הצירוף של לצלעות..., e1 לא יוצרת מעגל, שכן כל הצלעות הללו נמצאות בעץ, e2 e i 1 e. (חסר מעגלים). ω( ) ω( לכן, חייב להתקיים: (e e i ω(. אך ') ω( ) נקבל:, ω ( ') = ω( ) + ω( ei ) ω( אי לכך, מהשיוויון (e עץ אופטימלי (בעל משקל מינימלי מבין כל העצים הפורשים), ולכן אי השיוויון האחרון הוא שיוויון, וגם ' עץ אופטימלי! נשים לב שכל הצלעות של נמצאות ב-'. אם גם כל שאר צלעות נמצאות e 1, 1 e 2,... e i, e i, והוכחנו את הדרוש (שכן ' עץ אופטימלי ). אם לא, נחזור על תהליך הצלע הראשונה מבין e1, e2 שלא נמצאת ב-', (הרי היא תהיה הצלע הראשונה מבין,... en 1 ב-', נסיק כי ' = '',שהוא גם אופטימלי e שלא נמצאת ב-', -למה?!!) תוחלף בצלע אחר שהיתה ב- ' כדי ליצור עץ אחר (מאותם השיקולים שמהם הסקנו ש-' אופטימלי). ממשיכים כך,בתהליך e i+ 1, i+2,...e n 1. שמובטח להסתיים, עד שנקבל עץ אופטימלי שמכיל את כל צלעות בכך הוכחנו: אכן אופטימלי. סיכום נושאים ומונחים מ: יער עץ ותכונותיו תת גרף פורש, עץ פורש האלגוריתם של Kruskal - עמוד 14

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

logn) = nlog. log(2n

logn) = nlog. log(2n תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

אלגוריתמים בתורת הגרפים חלק שני

אלגוריתמים בתורת הגרפים חלק שני גירסה 1.00 5.12.2002 אלגוריתמים בתורת הגרפים חלק שני מסמך זה הינו השני בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t. תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

' 2 סמ ליגרת ןורתפ םיפרגה תרותב םימתירוגלא דדצ 1 : הלאש ןורתפ רבסה תורעה

' 2 סמ ליגרת ןורתפ םיפרגה תרותב םימתירוגלא דדצ 1 : הלאש ןורתפ רבסה תורעה אלגוריתמים בתורת הגרפים פתרון תרגיל מס' 2 לשאלות והערות נא לפנות לאילן גרונאו (shrilan@cs.technion.ac.il) א) ב) ג) גרף דו-צדדי (bipartite) הינו גרף (E )G V, אשר קיימת חלוקה של צמתיו לשתי קבוצות U,W e =

Διαβάστε περισσότερα

גרפים אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 הגדרה: מגן דוגמאות: זוגות לא סדורים כיוון שבקבוצה סדר לא חשוב.

גרפים אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 הגדרה: מגן דוגמאות: זוגות לא סדורים כיוון שבקבוצה סדר לא חשוב. אלגוריתמים בתורת הגרפים הרצאה 1 גיא פלג 15 במרץ 2012 אתר הקורס.clickit3 מרצה : בני מוניץ הציון: מבחן סופי: 80% שיעורי בית 20% ואפשרות לבוחן אמצע 20% מגן גרפים הגדרה: תהי V קבוצה סופית לא ריקה. ותהי E קבוצה

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

אלגוריתמים / תרגיל #1

אלגוריתמים / תרגיל #1 1 אריאל סטולרמן אלגוריתמים / תרגיל #1 קבוצה 02 (1) טענה: אם בגרף לא מכוון וקשיר יש 2 צמתים מדרגה אי זוגית ושאר הצמתים מדרגה זוגית, זהו תנאי הכרחי ומספיק לקיום מסלול אויילר בגרף. הערות: הוכחה: התוספת כי

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

אלגוריתמים בתורת הגרפים חלק ראשון

אלגוריתמים בתורת הגרפים חלק ראשון גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת

Διαβάστε περισσότερα

מבני נתונים ואלגוריתמים תרגול #8-9

מבני נתונים ואלגוריתמים תרגול #8-9 מבני נתונים ואלגוריתמים תרגול #89 מציאת מסלולים קצרים הבעיה: נתון גרף ממשוקל רוצים למצוא את המסלול הקצר בין זוג קודקודים עיקרון הרלקסציה של קשת: בדיקה האם ניתן לשפר מסלול מ s ל v ע"י מעבר דרך קודקוד u:?

Διαβάστε περισσότερα

מבני נתונים אדמיניסטרציה ד"ר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון:

מבני נתונים אדמיניסטרציה דר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון: מבני נתונים בס"ד, ט' אדר א' תשע"א: שעור 1 אדמיניסטרציה ד"ר אלכס סמורודניצקי, רוס 210, שני 5:30 4:15. ציון: בחינת מגן 20%. תרגילים: 14 13, מורידים את האחד הכי גרוע. 10% מהציון. אתר: www.cs.huji.ac.il/~dast

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

תורת הגרפים על פי הרצאות מאת פרופ' אהוד פרידגוט 11 ביולי 2010

תורת הגרפים על פי הרצאות מאת פרופ' אהוד פרידגוט 11 ביולי 2010 תורת הגרפים על פי הרצאות מאת פרופ' אהוד פרידגוט 11 ביולי 2010 רשם: שיר פלד, באמצעות L Y X גרסה 161 תיקונים יתקבלו בברכה במהלך ההפסקות או בכתובת מייל shirpeled@cs במבחן: להוכיח משפט אחד מתוך שניים ולפתור

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

רשימת בעיות בסיבוכיות

רשימת בעיות בסיבוכיות ב) ב) רשימת בעיות בסיבוכיות כל בעיה מופיעה במחלקה הגדולה ביותר שידוע בוודאות שהיא נמצאת בה, אלא אם כן מצוין אחרת. כמובן שבעיות ב- L נמצאות גם ב- וב- SACE למשל, אבל אם תכתבו את זה כתשובה במבחן לא תקבלו

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

, נתונה קבוצה של זוגות מותרים של צבעים בפרק זה נתמקד בשני מקרים מיוחדים של בעית צביעתו של גרף עם אילוצים

, נתונה קבוצה של זוגות מותרים של צבעים בפרק זה נתמקד בשני מקרים מיוחדים של בעית צביעתו של גרף עם אילוצים צביעה עם אילוצים תקצירים נבחרים 4 בפרק זה אנו מביאים הרחבות של בעיית הצביעה של קודקודים ומציגים גרסאות שונות שלה עם אילוצי צביעה של הקודקודים ושל הצלעות באופן כללי נניח שנתון גרף לכל צלע = ( E) ( u ) C

Διαβάστε περισσότερα

מיון. 1 מיון ערימה (Heapsort) חלק I 1.1 הגדרת ערימה 0.1 הגדרה של המושג מיון מסקנה: הערך הכי גבוה בערימה נמצא בשורש העץ!

מיון. 1 מיון ערימה (Heapsort) חלק I 1.1 הגדרת ערימה 0.1 הגדרה של המושג מיון מסקנה: הערך הכי גבוה בערימה נמצא בשורש העץ! מיון ערימה (Heapsort) מבני נתונים חלק I מיון מבני נתונים ד"ר ערן לונדון. הגדרת ערימה ערימה (בינארית) הינה מערך אשר ניתן להציגו כמו עץ בינארי מלא או כמעט מלא כאשר כל קודקוד בעץ מתאים לתא במערך. העץ הינו

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................

Διαβάστε περισσότερα

תוכן עניינים I בעיות מיון 2 1 סימון אסימפטוטי... 2 II מבני נתונים 20 8 מבני נתונים מופשטים משפט האב גרפים... 37

תוכן עניינים I בעיות מיון 2 1 סימון אסימפטוטי... 2 II מבני נתונים 20 8 מבני נתונים מופשטים משפט האב גרפים... 37 תוכן עניינים I בעיות מיון 2 1 סימון אסימפטוטי................................................ 2 2 מיון בועות. Bubble Sort............................................ 2 3 מיון מיזוג. Merge Sort............................................

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך

Διαβάστε περισσότερα

מבני נתונים ויעילות אלגוריתמים

מבני נתונים ויעילות אלגוריתמים מבני נתונים ויעילות אלגוריתמים (8..05). טענה אודות סדר גודל. log טענה: מתקיים Θ(log) (!) = הוכחה: ברור שמתקיים: 3 4... 4 4 4... 43 פעמים במילים אחרות:! נוציא לוגריתם משני האגפים: log(!) log( ) log(a b

Διαβάστε περισσότερα

תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2

תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2 סריקה לעומק רכיבים אי-פריקים רכיבים קשירים היטב מיון טופולוגי פרק 3 ב- Kleinberg/Tardos פרק 3.3-5 ב- al Cormen et קשירות נעיין שוב בבעיית הקשירות: ל- t? האם יש מסלול מ- s קשירות נעיין שוב בבעיית הקשירות:

Διαβάστε περισσότερα

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד

בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד בחינה בסיבוכיות עמר ברקמן, ישי חביב מדבקית ברקוד סמסטר: א' מועד: א' תאריך: יום ה' 0100004 שעה: 04:00 משך הבחינה: שלוש שעות חומר עזר: אין בבחינה שני פרקים בפרק הראשון 8 שאלות אמריקאיות ולכל אחת מהן מוצעות

Διαβάστε περισσότερα

. {e M: x e} מתקיים = 1 x X Y

. {e M: x e} מתקיים = 1 x X Y שימושי זרימה פרק 7.5-13 ב- Kleinberg/Tardos שידוך בגרף דו-צדדי עיבוד תמונות 1 בעיית השידוך באתר שידוכים רשומים m נשים ו- n גברים. תוכנת האתר מאתרת זוגות מתאימים. בהינתן האוסף של ההתאמות האפשריות, יש לשדך

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

חלק א' שאלה 3. a=3, b=2, k=0 3. T ( n) היותר H /m.

חלק א' שאלה 3. a=3, b=2, k=0 3. T ( n) היותר H /m. פתרון למבחן במבני נתונים, מועד א', קיץ 2005 חלק א' שאלה 1 א. רכיב הקשירות החזק של קודקוד x בגרף מכוון הינו אוסף כל הקודקודים y שמקימים שיש מסלול מ- x ל- y וכן מסלול מy ל- x. טעויות נפוצות שכחו לכתוב שזה

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

מבני נתונים עצים שיעור 7

מבני נתונים עצים שיעור 7 בס ד מבני נתונים עצים שיעור 7 שי גולן כ ח בניסן, תשע ו 6 במאי 2016 תקציר בתרגול זה נתחיל לדון בעצים. נגדיר עצים כלליים ועצים בינאריים, ונציג את ההגדרות הבסיסיות בתחום. נתרגל הוכחת תכונות של עצים באמצעות

Διαβάστε περισσότερα

אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה:

אוטומט סופי דטרמיניסטי מוגדר עי החמישייה: 2 תרגול אוטומט סופי דטרמיניסטי אוטומטים ושפות פורמליות בר אילן תשעז 2017 עקיבא קליינרמן הגדרה אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה: (,, 0,, ) כאשר: א= "ב שפת הקלט = קבוצה סופית לא ריקה של מצבים מצב

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

מבנים אלגבריים II 27 במרץ 2012

מבנים אלגבריים II 27 במרץ 2012 מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................

Διαβάστε περισσότερα

1 סכום ישר של תת מרחבים

1 סכום ישר של תת מרחבים אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +

Διαβάστε περισσότερα

התפלגות χ: Analyze. Non parametric test

התפלגות χ: Analyze. Non parametric test מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06

Διαβάστε περισσότερα

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z. פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

תורת הגרפים - סימונים

תורת הגרפים - סימונים תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא

Διαβάστε περισσότερα

מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.

מצולעים מצולעהוא צורה דו ממדית,עשויה קושבורסגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע. גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

מבוא ללוגיקה מתמטית 80423

מבוא ללוגיקה מתמטית 80423 מבוא ללוגיקה מתמטית 80423 24 במרץ 2012 איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה או המתרגל קשורים לסיכום זה בשום דרך. הערות יתקבלו בברכה.noga.rotman@gmail.com אהבתם? יש עוד! www.cs.huji.ac.il/

Διαβάστε περισσότερα

מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם.

מבחן מועד ב' בהצלחה! אנא קיראו היטב את ההוראות שלהלן: ודאו כי כל עמודי הבחינה נמצאים בידכם. 7.8.2017 מבחן מועד ב' תאריך הבחינה: שמות המרצים: מר בועז ארד פרופ' עמוס ביימל מר יהונתן כהן דר' עדן כלמטץ' גב' מיכל שמש אנא קיראו היטב את ההוראות שלהלן: שם הקורס: תכנון אלגוריתמים מספר הקורס: 202-1-2041

Διαβάστε περισσότερα

סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך.

סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך. סיכום לינארית 28 בינואר 2 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom תוכן עניינים 3 מבוא והגדרות בסיסיות 6 שדות 7 המציין של

Διαβάστε περισσότερα

אלגוריתמים 1, סמסטר אביב 2017

אלגוריתמים 1, סמסטר אביב 2017 BFS, DFS, Topological Sort תרגיל בית 1 מוסכמות והנחות להלן רשימת הנחות ומוסכמות אשר תקפות לכל השאלות, אלא אם כן נכתב אחרת במפורש בגוף השאלה. עליכם להוכיח נכונות ולנתח סיבוכיות עבור כל אלגוריתם מוצע. במידה

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1

חשבון אינפיניטסימלי 1 חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.

Διαβάστε περισσότερα

c ארזים 15 במרץ 2017

c ארזים 15 במרץ 2017 הסתברות למתמטיקאים c ארזים 15 במרץ 2017 הקורס הוא המשך של מבוא להסתברות שם דיברנו על מרחבים לכל היותר בני מניה. למשל, סדרת הטלות מטבע בלתי תלויות היא דבר שאי אפשר לממש במרחב בן מניה נסמן את התוצאה של ההטלה

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

קומבינטוריקה על פי הרצאות מאת פרופ' גיל קלעי 19 ביולי = 2 n k. k= ( 1) n n + 1

קומבינטוריקה על פי הרצאות מאת פרופ' גיל קלעי 19 ביולי = 2 n k. k= ( 1) n n + 1 1 קומבינטוריקה על פי הרצאות מאת פרופ' גיל קלעי 19 ביולי 010 רשם: שיר פלד, באמצעות LYX גרסה 1.6.1 תיקונים יתקבלו בברכה במהלך ההפסקות או בכתובת מייל shirpeled@cs 1 שיעור 1 1.1 מבוא נעסוק בבעיות קיצוניות

Διαβάστε περισσότερα